C³ Demonstration Plan

Seattle Snowmass Summer Meeting 2022

Faya Wang 7/22/2022

- C³ technology: Modularized linac technology based on liquid N2 cooled c-band cavity.
- Each cryomodule (CM) is about 9 m long and has 4 rafts.
- Each raft has 2 accelerator structures and one quadrupole magnet.
- Each CM can be driven by 4 X 50MW klystrons and can reach up to 0.8 GeV.

Table of Parameters - 250/550 GeV

Collider	CLIC	ILC	C_3	C^3
CM Energy [GeV]	380	250 (500)	250	550
Luminosity $[x10^{34}]$	1.5	1.35	1.3	2.4
Loaded Gradient [MeV/m]	72	31.5	70	120
Geometry Gradient [MeV/m]	57	21	63	108
Length [km]	11.4	20.5 (31)	8	8>
Num. Bunches per Train	352	1312	133	75
Train Rep. Rate [Hz]	50	5	120	120
Bunch Spacing [ns]	0.5	369	5.26	3.5
Bunch Charge [nC]	0.83	3.2	1	1
Crossing Angle [rad]	0.0165	0.014	0.014	0.014
Site Power [MW]	168	125	~ 150	~ 175
Design Maturity	CDR	TDR	pre-CDR	pre-CDR

Table of Parameters - 250/550 GeV

- Main linac total cryogenic heat load
 - 9 MW (C³250, C³550-8km) 0.4 W/cm² on structure
 - 13.4 MW C³550-7km without Pulse compressor 0.6 W/cm² on structure

Gradient	Power diss.	rf flat top	Pulse	Comments	Power/area	ΔT Cu-bulk
(MV/m)	(W)	(ns)	compr.		$(\mathrm{W/cm^2})$	to LN_2 (K)
70	2500	700	N	${ m C}^3$ -250	0.393	2.3
120	2500	250	N	${ m C}^3$ -550	0.393	2.3
155	3900	250	N	C^3 -550 in 7 km	0.614	2.5
120	1650	250	Y	$C^3 - 550$	0.259	2.1

Design Study C³-250-550 GeV LC at the next P5!

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
 - Demonstrate operation during cryogenic flow equivalent to the main lina
- Demonstrate beam dynamics
 - Fully damped-detuned accelerating structures and beam-based alignment
 - Operation with a multi-bunch photo injector
 - Beam diagnostic line
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin)
 - 18X 50 MW C-band sources off the shelf units
- Manufacturability development with industry on rf source, structures and cryomodules.

Design Study C³-250-550 GeV LC at the next P5!

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
 - Demonstrate operation during full cryogenic flow equivalent to the main linac
- Demonstrate beam dynamics
 - Fully damped-detuned accelerating structures
 - Operation with a multi-bunch photo injector
 - Beam diagnostic line
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin)
 - 18X 50 MW C-band sources off the shelf units
- Manufacturability development with industry on rf source, structures and cryomodules.

Design Study C³-250-550 GeV LC at the next P5!

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
 - Demonstrate operation during full cryogenic flow equivalent to the main linac
- Demonstrate beam dynamics
 - Fully damped-detuned accelerating structures and beam-based alignment
 - Operation with a multi-bunch photo injector
 - Beam diagnostic line
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin)
 - 18X 50 MW C-band sources off the shelf units
- Manufacturability development with industry on rf source, structures and cryomodules.

Design Study C³-250-550 GeV LC at the next P5!

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
 - Demonstrate operation during full cryogenic flow equivalent to the main linac
- Demonstrate beam dynamics
 - Fully damped-detuned accelerating structures and beam-based alignment
 - Operation with a multi-bunch photo injector
 - Beam diagnostic line
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin)
 - 18X 50 MW C-band sources off the shelf units
- Manufacturability development with industry on rf source, structures and cryomodules.

❖ 4 stages − goals & scope & deliverables

- **❖**4 stages goals & scope & deliverables
 - 3: CM linac scale-up full demonstration for linear collider (LC)
 - Beam dynamics demonstration: wakefields, alignment, and stability (jitter, vibration, etc) control.
 - Full cryogenic (gas/LN) flow rate at equivalent heat load of LC.

❖4 stages – goals & scope & deliverables

- 3: CM linac scale-up full demonstration for linear collider (LC)
 - Beam dynamics demonstration: wakefields, alignment, and stability (jitter, vibration, etc) control.
 - Full cryogenic (gas/LN) flow rate at equivalent heat load of LC.
- 2: CM scale-up minimum demonstration
 - Beam dynamics: long range wakefields, beam-based alignment
 - Availability with and without beam

❖4 stages – goals & scope & deliverables

- 3: CM linac scale-up full demonstration for linear collider (LC)
 - Beam dynamics demonstration: wakefields, alignment, and stability (jitter, vibration, etc) control.
 - Full cryogenic (gas/LN) flow rate at equivalent heat load of LC.
- 2: CM scale-up minimum demonstration
 - Beam dynamics: long range wakefields, beam-based alignment
 - Availability with and without beam
- 1: CM engineering design study and prototypes
 - Beam acceleration, beam loading, energy stability
 - Initial verification of RF and CM design

❖4 stages – goals & scope & deliverables

- 3: CM linac scale-up full demonstration for linear collider (LC)
 - Beam dynamics demonstration: wakefields, alignment, and stability (jitter, vibration, etc) control.
 - Full cryogenic (gas/LN) flow rate at equivalent heat load of LC.
- 2: CM scale-up minimum demonstration
 - Beam dynamics: long range wakefields, beam-based alignment
 - Availability with and without beam
- 1: CM engineering design study and prototypes
 - Beam acceleration, beam loading, energy stability
 - Initial verification of RF and CM design
- 0: Proof of concept for the most critical structure performance parameters

- **❖**4 stages goals & scope & deliverables
 - 3: CM linac scale-up full demonstration for linear collider (LC)
- 2028-2030
- Beam dynamics demonstration: wakefields, alignment, and stability (jitter, vibration, etc) control.
- Full cryogenic (gas/LN) flow rate at equivalent heat load of LC.
- 2026-2028
- 2: CM scale-up minimum demonstration
 - Beam dynamics: long range wakefields, beam-based alignment
 - Availability with and without beam
- 2023-2026
- 1: CM engineering design study and prototypes
 - o Beam acceleration, beam loading, energy stability
 - Initial verification of RF and CM design
- 2022 2023 0: Proof of concept for the most critical structure performance parameters

- **❖**4 stages goals & approach & deliverables
 - 3: CM linac scale-up full demonstration for linear collider (LC)
- 2028-2030
- A linac of 3 cryomodules
- An injector and beam diagnostic line
- Cryogenic system for 5.5 L/s LN flow test (9 MW equivalent heat load)
- 2026- 2028^{*}
- 2: CM scale-up minimum demonstration
 - Full dressed single CM (4 rf stations and 8 rf structures)
 - A multi-bunch photo injector and beam diagnostic line
- 2023-2026
- 1: CM engineering design study and prototypes
 - Full dressed half CM (2 rf stations and 4 rf structures)
 - An injector with thermionic DC
- 2022 2023 0: Proof of concept for the most critical structure performance parameters
- SLAC

Regular structure baseline high power test

❖4 stages − goals & scope & deliverables

2028 - 2030

2026-2028

- ✓ Security
- ✓ Medical: linac therapy
- ✓ Industrial: high energy CT, irradiation with electrons or x-rays

2023- 2026

Compact cost-effective low energy linac

- 2022 2023
- 0: Proof of concept for the most critical structure performance parameters
 - Proof of fundamental high gradient structure

❖4 stages − goals & scope & deliverables

2028 - 2030

2026- 2028

- ✓ Medical: VHEE therapy, linac based protron therapy
- ✓ Compact high energy (100s keV to 1MeV) Compton source
- ✓ Lower energy injector for booster ring
- ✓ High brightness injector feasibility

2023 - 2026

- Compact high energy linac
- **1:** CM engineering design study and prototypes
 - A half CM with 2x50MW klystrons 0.4 GeV over 5 meters

❖4 stages − goals & scope & deliverables

2028-2030

2026**- 2028**

- ✓ Energy booster with existing facilities like LCLS-X
- ✓ Compact light sources like FEL.

2023- 2026

- Compact high energy linac module
- 2: CM scale-up minimum demonstration
 - A single CM linac with 4x50 MW klystrons of ~ 0.8 GeV over 9 meters

❖4 stages − goals & scope & deliverables

2028**- 2030**

2026-2028

- ✓ Positron generator
- ✓ Advanced accelerator concept study like PWFA
- ✓ Full energy linac injector for storage ring.

2023-2026

- Compact high energy full linac
- 3: CM linac scale-up full demonstration for linear collider (LC)
 - A C³ full linac of 3 CMs ~ 3 GeV over about 30+ meters

Demo R&D Plan Summary

Demo R&D Plan Summary

☐ In Next 4 Years

- ✓ Finish few prototype structures (with and without damping) test
- ✓ Accomplish C3 technology scale-up engineering design minimum demonstration
 - Half cryomodule demonstration with high current/charge beam
 - Built two high power c-band test stands
- ✓ Initiates industrial engagement for manufacturability development

☐ Possible Spin-offs

- ✓ Compact medical and industrial linac.
- ✓ Low emittance NC photo injector development
- ✓ Energy booster linac for LCLS-X
- ✓ Compact full energy linac injector for Synchrotron light source

Questions?

